LoRa APRS-iGate für den Raspberry PI

(c) 2024, Peter Stirnimann, hb9pae@gmail.ch Software-Version: 1.3

Revision: 2024-10-12 Version 1.3.0 Finale Version

Status	Wetter Logfile	Konfiguration	Info
Status - LoRa APRS-iGate			
iGate Call	HB9PAE-1		
Connect to APRS-IS	5 True		
iGate LAT	47.54645		
iGate LON	8.91262		
iGate Altitude	483		
Sensor BME280	False		
BME280 Intervall	300		
Temperatur	1.0		
Luftdruck	1.0		
Luftfeuchtigkeit	1.0		
Last Message	None		
RSSI	0		
Pkt RSSI	0		
SNR	0		
Packet Err	0		
APRS-IS Message	1		
RX Count	0		
Wx-Data	False		
WX Intervall	300		
Beacon Intervall	600		
Beacon Message	-x		
Uptime	0h 0m 39s		
Version	0.9.7		
DirtyFlag	False		
	2023-08-18	3 12:52:47	Copyright © hb9pae@swiss-artg.ch

Allgemeines

Der LoRa Empfänger empfängt Positionssignale und APRS-Meldungen im Amateurradio LoRa-Band (433.775 MHz). Die decodierten APRS-Meldungen werden anschliessend an die APRS Datenbank weitergeleitet. Diese können anschliessend unter http://aprs.fi abgerufen und angezeigt werden.

Die empfangenen Daten werden im Status-Report auf dem OLED-Display oder über einen Webbrowser :5000 (http://192.168.0.123:5000) abgerufen werden.

Das Python Programm IGate.py steuert das LoRa RPI-Board der SWISS-ARTG mit dem RF95W Chip RF-Hope als LoRa-Empfänger. Weitere Informationen zum RPI-Board unter: https://www.swiss-artg.ch/index.php? id=174 (Menu: Digital Data > LoRa-APRS > LoRa Gateway)

Neues in der Version 1.3.0

- Das Konfigurationsmenu im Web-Interface ist mit einem Passwort geschützt.
- Dialoge auf dem OELD-Display überarbeitet.
- Tastenbelgung überarbeitet.
- Umstallung Betriebssystem auf Debian 12 / Python 3.11.
- Ersatz der veralteten Python Bibliotheken.
- Anpassungen lora.c Compileroptionen.
- Modul HMI.py in Button.py und Display.py aufgeteilt.
- Button.py: neue Lib Igoio, Tastenbelegung neu
 - 1:Status, 2: Pkt Info, 3: Config 4: Menu up, 4 Menu Down.
- Display.py: neue Lib oled-txt (Ersatz für die veraltete Adafruit-SSD1306 Lib).

Copyright

Das hier dokumentierte Programm ist Open Source, der Programmcode ist frei verfuegbar.

Projektdokumentation

- Quellprogramme und Beschreibungen unter https://cloud.hoststar.ch/s/GytsTsQSYSoyAXk
 - Imagedatei zum Raspberry PI Version 3+ / 4:
 - Schema, Stückliste, Aufbauanleitung
 - Kurzbeschreibung und Installationsanleitung

Bausatz LoRa APRS-iGate RPI-Aufsteckplatione

Die SWISS-ARTG stellt bietet einen Bausatz (Platine und alle Bauteile, solange Vorrat) an. Interessenten melden sich unter info@swiss-artg.ch oder beim Autor.

Bestückung RPI-Board

Schema, Stückliste und Aufbauanleitung sind auf der SWISS-ARTG Webseite oder im Git-Repository verfügbar.

Modifikation RPI-Board

Die neue Version vom RPI-Board muss nicht modifiziert werden. Versions-Beschriftung oberhalb Diode D1: «231125».

Die erste Generation des RPI-Boards der SWISS-ARTG muss für den Interrupt-Betrieb modifiziert werden. Verbinde dazu Pin 14 vom RFM96W (DIO 0) mit Pin 11 (BCM17) vom RPI 40-pol Header.

Wetterstation

Falls ein Sensor BME280 angeschlossen und aktiviert ist ("SENSOR BME280 = True" wird der Sensor alle 5 Minuten abgefragt. Ist das FLag "Wx-Data = True" werden die Sensordaten auch an APRS.FI gesendet. Die Sensordaten werden intern im Menue "Wetter" angezeigt.

Installation

Für die Installation wird ein IMAGE zur Verfügung gestellt. Programme und Beschreibungen stehen unter https://cloud.hoststar.ch/s/GytsTsQSYSoyAXk zum Download zur Verfügung. Eine Projektbeschreibung und weitere Informtionen sind auf der SWISS-ARTG Webseite (Menu: Digital Data > LoRa APRS > LoRa Gateway) zu finden.

Installiere das Image-File mit einem Imager-Programm (z.B. Raspberry Pi Imager) auf eine SD-Karte (mindestens 8 GB).

Manuelle Installation

Der Programmcode kann auch manuell installiert werden. Dabei müssen die erforderlichen Bibliotheken und Quellprogramme installiert werden. Weitere Hinweise zur manuellen Installation sind im INSTALL.md dokumentiert.

Inbetriebnahme

- Das modifizierte LoRa RPI-Board auf dem Raspberry PI aufstecken.
- Die programmierte SD-Karte im RPI einstecken.
- RPI mit dem lokalen Netzwerk verbinden.
- PRI mit der Stromversorgung (5 VDC) versorgen.

Nach dem ersten Start des Raspberry PI wird das Filesystem auf der SD-Karte expandiert, es folgen mehrere Restarts. Nach dem erfolgreichen Start des Programmes erscheint der Welcome-Bildschirm auf dem OLED-Display.

Konfiguration

Die Konfiguration der persönlichen Daten (Rufzeichen, Koordinaten etc.) erfolgt über einen Web-Browser:

- Adresse <http://:5000>, Reiter Konfiguration
- Abfrage Benutzer und Passwort. Als Benutzername wird das iGate Rufzeichen verwendet.
 - Default Benutzer: "NOCALL" (aktuelles Rufzeichen iGate), Passwort "geheim".
 - Das Passwort kann im Konfigurationsmenu geändert werden.
- Trage iGate Rufzeichen, den Passcode und die Standortdaten im Konfigurations-Formular ein und speichere die Daten. Die Parameter werden im File /opt/RPI-iGate-LoRa/igate.ini abgespeichert.

Spezielle Parameter

- EN_APRSIS: True / False: Bestimmt, ob das iGate Daten an das APRS-IS System übermittelt.
- EN_BME280: True / False: BME280 Sensor angeschlossen
- EN_WXDATA: True / False: Bestimmt ob die BME280 Sensordaten als WX-Bake an das APRS-IS geliefer werden.

Bedienung über das Terminal

Das Terminal (Konsole) kann über SSH oder direkt mit Bildschirm und Tastatus am RPI erreicht werden.

Start Befehl

• sudo systemcontrol start igate.service

Automatischer Start nach dem Booten

• sudo systemctrol enable igate.service

Funkion der 5 Tasten

Die drei unteren Tasten auf dem RPI-Board wählen den Anzeigemode

- Taste links > Status
- Taste mitte > Konfiguration
- Taste rechts > Letzte Meldung

Die beiden oberen Tasten unter dem Display (Menu vor/zurück) ermöglichen den sequentiellen Aufrauf aller Dialoge.

Hardwarekonfiguration

Der LoRa Treiber erwartet folgende Hardwarekonfiguration (File LORA/lora.c)

- int ssPin = 10; // ChipSelect BCM 8
- int dio0 = 21; // IRQ BCM 5
- int RST = 22; // RESET BCM 6